Urban Watershed Management

Karina.Bynum@tn.gov

Karina Bynum, MSCE, P.E.

Watershed Functions

- Collection
- Storage
- Discharge
- Reactions
- Habitat
- Attenuation
- Flushing

Hydrology

Ecology

Response

Watershed Characteristics

- Physical
- Climate
- Stream order
- Urbanization gradient
 Roads, mining,
 agriculture, residential,
 industry

DRAI	NAGE BASIN CHARACTERISTICS
Cha	shed Morphometry nnel Geometry (cross section) ography (slope, aspect, drainage density
Wetla	nds/Riparian Areas
Soils Dep Infil	th
Geolo	gy (lithology)
Vegeta	tion (upland)

Cammon, 1998

Collection

- Surface
- Relief
- Slope
- Conveyance
- Channel

Urban Collection

Urban Watershed Streams Ditches Roads Pipes Trenches

Change of function: 3-4x the density of natural drainage network

Development process: Remove vegetation Drain the land

Storage

Natural Watershed •Relief

•Soil

•Vegetation •Channels

Urban Watershed

- Harvest
- •Retention
- •Detention •GIPs

Development process

reduces storage

- Vegetation and soil removal
- 2. Relief reduction
- 3. Soil compaction4. Surface sealing
- Biomass reduction

Urban Storage

- Wetlands, ponds
- Flood plains
- · Detention, GIPs

Urban Discharge

Q = P-S-ET

Development process shortens travel time reduces storage

- LengthSlope
- Roughness

Biogeochemical Reactions

 Dynamic three dimensional interface continuum

(Fluvial hydrosystem approach)

- Longitudinal, lateral and vertical transfers of energy, material and biota
- Sediment transport

Petts 1996

Biogeochemical Reactions Development process effects

- Increased heat and light input
- Increased pollutant concentrations
- Reduced nutrient uptake
- Reduced quality of biotic indices

Walsh et al. 2005

Habitat

- Life supporting system with a pulse of bidirectional interactions over range of spatial and temporal scales
- Nested hierarchy of subsystems creates diversity patterns at various levels
- Variability of hydrological and geomorphological processes determine the types of habitat patches and the strength, duration and frequency of their connectivity

http://water.usgs.gov/nawqa/protocols/OFR-93-408/habitp5.html

Habitat Development process effects

- Hydromodification
- Reduced canopy
- · Loss of stream buffer
- Increased bank erosion
- Reduced diversity and connectivity

http://www.epa.gov/caddis/ssr_urb_phb1.html

Watershed Integrated Response

- Watersheds balance inputs, resources and constraints resulting in integrated response of attenuation and flushing.
- Level of knowledge of hydrologic and ecological functions and leveraging of watershed adaptive capacity is reflected in stormwater management and municipal operations.
- Watershed provides ecosystem services for local economy, recreation, public involvement, education and health of the community.

Management Framework

- Inventory of assets
- Monitoring as feedback
- Actionable information
- Municipal integrated strategy

Goals	Strategies		
	Non-site specific	Site-specific	
Water quality improvement	Nonpoint source controls: Septic system upgrade SSO control/sewer repair Maintain minimum flows Low-impact development Litter cleanup Monitoring	Point source controls: NPDES discharge permits CSO reduction (LTCPs) Green etormwater BMPs Riparian bicengineering Brownfield remediation Reforestation /aquiller recharge	
Flood hazard reduction	Flood modeling and mapping Floodplain regulations Warning/resocuation plans Floodproofing Automated rainfall/ streamflow monitoring Public information	Remove channel obstacles Restore natural flow regime Floodprone peoperly buyout Wetland enstoration Green stormwater BMPs (auch as rain gardens, green roofs, and porous paving)	
Aquatic habitat/ fisheries restoration	Maintain minimum flows Increase dissolved oxygen Reduce toxic, organics, metals, etc. Reduce bank exosion and sedimentation Litter clean-up Invasives control (such as the zebra mussel) Fish restocking	Dam removal Stream daylighting Remove shoreline armoring Remove shoreline armoring Renoter steepers or come (pool/rifle-himeaders) Riparian buffer restoration (bloengineering and reforestation) Imasive plant removal/ Planting of rative species Weetlands restoration Fish passageways on dams	
Public use and awareness	Watershed public events Reduce health hazards Improve visibility of stream Public information (such as signage, websites, and prevaletters)	Urban waterfront renewal Greenways/bikeways Public recreation sites Boat launch ramps Environmental education sites	

Platt 2006

"The blind forces of urbanization, flowing along the lines of least resistance, show no aptitude for creating an urban and industrial pattern that will be self-sustaining and self-renewing."

Lewis Mumford (1895-1990) The Natural History of Urbanization 1956

References

- Black, P. E. 1996. Watershed hydrology, second edition. Ann Arbor Press, Chelsea, MI.
- Bruce McCammon B., Rector J., and Gebhardt K., A Framework for Analyzing the Hydrologic Condition of Watersheds, 1998, USDA, FS, USD of Interior, BLM
- Sujay S. Kaushal and Kenneth T. Belt, The urban watershed continuum: evolving spatial and temporal dimensions, Urban Ecosystems ,Volume 15, Number 2 (2012), 409-435, DOI: 10.1007/s11252-012-0226-7,
- USGS gages: http://waterdata.usgs.gov/usa/nwis/uv?03538830
- US EPA CADDIS: http://www.epa.gov/caddis/index.html
- Petts G.E. and Amoros C., 1996, The fluvial hydrosystems, Chapman & Hall, London.
- Fermier A. K., 2004, Stream ecology: concepts and case study of macroinvertebrates n the Skeena River Watersehd, British Columbia..
- Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP II, 2005, The urban stream syndrome: Current knowledge and the search for a cure. Journal of the North American Benthological Society 24(3):706-723.
- Meador, M.R., Hupp, C.R., Cuffney, T.F., and Gurtz, M.E., 1993, Methods for characterizing stream habitat as part of the National Water-Quality Assessment Program: U.S Geological Survey Open File Report 93-408, 48 p.
- US EPA, 2007, National Management Measures to Control Nonpoint Source Pollution from Hydromodification: http://www.epa.gov/owow/NPS/hydromod/
- Platt R. H., 2006, Urban Watershed Management Sustainability, one stream at a time., Environment V48, N4, pp. 26-42.

Thank you

Karina Bynum, MSCE, P.E. (931) 432 7634 Karina.Bynum@tn.gov