University of Tennessee at Knoxville 2012 Watershed Symposium September 18, 2012

EFFECT OF LAND USE ON MEAN ANNUAL STREAMFLOW AT REGIONAL SCALE

Liem T. Tran Geography Department

INTRODUCTION

- Issue of scale in hydrology and hydrologic modeling
- □ Framework: Regional Hydrologic Modeling for Environmental Evaluation (RHyME²)
- Effects of land use on mean annual streamflow at regional scale

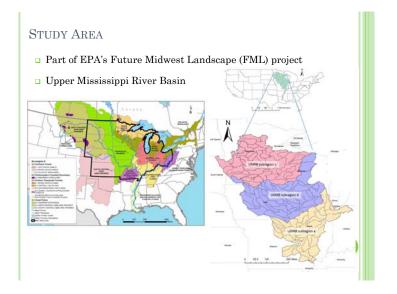
CHALLENGES TO HYDROLOGY

- Beven (1987)'s *Towards a new paradigm in hydrology*:
 - "... complexity at small scales leading to relative simplicity (the hydrograph) at large scales. Little or no success has been gained in relating the former to the latter...
 - "It is indicative of an impending theoretical crisis in hydrological science that we have made little progress in relating the former to the latter."

CHALLENGES TO HYDROLOGY

- □ The problem of scale in hydrology:
 - □ Inherently linked to the problems of nonlinearity, heterogeneity, and nonequilibrium
 - Different viewpoints on the issue of scale in hydrology:
 - Beven (2001)'s "How far can we go in distributed hydrological modelling?": "scaling theories will ultimately prove to be impossible and that is therefore necessary to recognise the scale dependence of model structures"
 - Blöschl (2001)'s "Scaling in hydrology": "...scaling work should materialize as a unifying theory of hydrology—a theory so urgently needed—for which I believe the scaling ideas must be the cornerstone"
- Consensus: need to identify the "dominant process controls" at different scales

HIERARCHY THEORY


- A theory of scaled systems developed primarily in the context of general systems theory in 1960's
- Key point immediately relevant to the issue of scale:
 - □ Structure based on differences in rates:
 - Organization results from differences in process rates
 - A complex system can be decomposed into organizational levels and into discrete components within each level
 - Vertical structure in hierarchical systems: behaviors at higher organizational levels occur at slower rates; lower organizational levels exhibit rapid rates
 - Horizontal structure in hierarchical systems: can be decomposed into subsystems

PRACTICING HIERARCHY THEORY IN HYDROLOGIC MODELING

□ Framework: Regional Hydrologic Modeling for

Environmental Evaluation (RHyME²)

- □ Hierarchical structure/scaled system:
 - $\hfill\square$ Recognize the hierarchical structure of hydrologic system
 - Differentiate hydrologic processes/mechanisms at different spatio-temporal scales
- □ Nonequilibrium dynamics and metastability:
 - Deal with nonequilibrium and metastability of hydrologic system in the context of hierarchical structure/scaled systems

MEAN ANNUAL STREAMFLOW MODEL

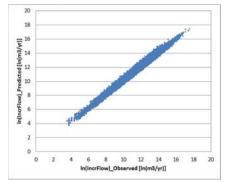
• Mean annual incremental flow Qi of catchment i:

$$Q_{i} = e^{\beta_{0}} X_{1}^{\beta_{1}} X_{2}^{\beta_{2}} X_{3}^{\beta_{3}} ... (\sum_{k=1}^{n} m_{k} \% LC_{k} + 1) \gamma$$
(1)

 \square $X_{j},$ are the climatic and geomorphologic characteristics of catchment i

 $\square \beta_i$, *i*=0,...*m*, are model coefficients

- $\hfill\square$ %LC_k, k=1,...n, are percentage of LULC k in catchment I
- Linearize (1) and solve with spatial error model:

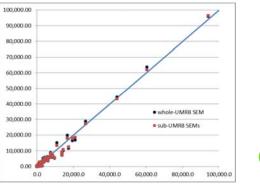

 $\ln(\mathcal{Q}_i) = \beta_1 \ln(X_1) + \beta_2 \ln(X_2) + \beta_3 \ln(X_3) + \dots + \sum_{k=1}^n \% LC_k \ln(\alpha_k) + \lambda W_i \xi_i + \varepsilon_i$

MEAN ANNUAL STREAMFLOW MODEL

- Spatial error model for the whole UMRB (whole-UMRB SEM)
- Spatial error models for three sub regions a, b, and c (sub-UMRB SEM) for twofold purposes:
 - □ If detailed sub-UMRB SEMs perform better than whole-UMRB SEM
 - To explore spatial variations of the coefficients in the models.

RESULTS

Predicted versus observed IncrFlow (in natural logarithm form)


Results

□ Climatic & landscape coefficients

Variables	whole-UMRB SEM	sub-UMRB SEM a	sub-UMRB SEM b	sub-UMRB SEM c
InArea	1.0050	1.0032	1.0050	1.0042
InStreamDensity	-0.0019	-0.0028	-0.0023	-0.0032
InPrecip	2.0391	0.8489	1.0694	2.9516
InTemp	-0.4956	-0.1690	-0.4510	-0.7080
InSoil	0.0060	0.0014	0.0061	0.0152
InMaElev	-0.0965	-0.0462	-0.0996	-0.0344
InSlope	0.0010	0.0006	0.0018	0.0005
Pseudo R-squared	0.984	0.993	0.991	0.981

RESULTS

□ Simulated versus observed streamflow at 533 USGS sites

LAND USE	Variables	whole-UMRB SEM	sub-UMRB SEM a	sub-UMRB SEM b	sub-UMRB SEM c
Low Intensity Residential	NLCD_21	0.0001	0.0004	-0.0003	-0.0004
High Intensity Residential	NLCD_22	0.0002	0.0003	-0.0001	0.0008
Commercial/Industrial/Transportation	NLCD_23	0.0000	0.0004	-0.0003	-0.0005
Bare Rock/Sand/Clay	NLCD_31	-0.0005	0.0007	-0.0006	0.0092
Quarries/Strip Mines/Gravel Pits	NLCD_32	0.0005	0.0003	0.0003	0.0004
Transitional	NLCD_33	0.0011	0.0009	-0.0005	0.0016
Deciduous Forest	NLCD_41	0.0004	0.0004	0.0002	0.0004
Evergreen Forest	NLCD_42	0.0009	0.0006	0.0014	0.0005
Mixed Forest	NLCD_43	0.0009	0.0011	0.0010	0.0003
Shrubland	NLCD_51	-0.0007	0.0020	-0.2082	-0.0014
Orchards/Vineyards/Other	NLCD_61	0.0011	0.0004	-0.0006	
Grassland/Herbaceous	NLCD_71	-0.0005	0.0003	-0.0012	-0.0004
Pasture/Hay	NLCD 81	0.0003	0.0004	0.0001	0.0002
Row Crops	NLCD_82	0.0001	0.0002	-0.0003	-0.0002
Small Grains	NLCD_83	0.3287	0.0002	-0.0026	0.0007
Fallow	NLCD_84	0.0001	0.1353	-	-
Urban/Recreational Grasses	NLCD_85	0.0006	0.0005	0.0001	-0.0001
Woody Wetlands	NLCD_91	0.0003	0.0001	0.0002	0.0003
Emergent Herbaceous Wetlands	NLCD 92	0.0001	0.0003	-0.0001	-0.0001

DISCUSSION

- □ LC is an important agent with respect to its impact on mean annual streamflow in UMRB (easy conclusion).
- LC impact on streamflow is not a simple function of a LC's spatial extent nor LC type but arguably a result of complex interactions among various LCs and climate/geomorphologic factors (modeling implication).
- Caution needs to be taken in comparing different studies or in generalization across scales regarding the impact of LC on streamflow (modeling implication).

Thank you! Do you have any question?